
SBL Hebrewסבל
Font User Manual

Font version 1.5x
Manual version 1.51, February 2008

Prepared by John Hudson, Tiro Typeworks,
for the Society of Biblical Literature

© John Hudson, 2003 & 2007
SBL Hebrew is a trademark of the Society of 
Biblical Literature



2

Version 1.5x of the SBL Hebrew font is an interim release. It adds 
support for Dead Sea Scrolls transcription (see page 17), and for the 
new Unicode 5.0 holam haser for vav character (see page 16), and fixes 
some bugs in previous versions. For the most part, input and editing 
is exactly as in version 1.12 and later.

Version 2.00 is already in development, and will be released later 
this year; this update will include more significant changes, especial-
ly refinement of the positioning positioning of marks relative to let-
ters and to each other, and of the spacing between letters, especially 
when one or more of the letters takes multiple marks.

When we released the first version of the SBL Hebrew font, ad-
equate application support was almost entirely limited to Office 
2003 on the Windows platform. Since then, as subsequent versions 
have been made available, we have been able to note improvements 
in support, both in other Windows applications and on Macintosh 
and Linux platforms. The current version of the manual no longer 
records such information, since the pace of new support is now such 
that this dynamic information is better presented via the SBL web-
site. For this information, downloads for current versions, keyboard 
drivers and other resources, see http://www.sbl-site.org/resources (in 
progress).

Manual version 1.51
February 2008



3

If you have not already downloaded the latest version of the SBL 
Hebrew font, you should do so now. See page 23 for download infor-
mation and links to other useful websites.

Please take some time to review this manual. SBL Hebrew is a 
complex font that makes use of new technologies that may be un-
familiar to you if you have not worked with Unicode encoded text 
or font files before. Many of the lessons you may have learned from 
using other Biblical Hebrew fonts and software may not apply, and it 
may be necessary to develop some new work habits.

The SBL Hebrew font is designed for use with systems and applica-
tions that  natively support appropriate Unicode text processing and 
OpenType Layout. Most of this manual is specific to Windows in-
stallations, since this has, to date, been the most common platform 
for users of the font and has also provided the best support. To in-
stall the font on a Windows system, open the Fonts folder and drag 
and drop the SBL_Hbrw.ttf file onto the folder. The Fonts folder can 
be opened either by navigating in Windows Explorer to

 c:\Windows\Fonts

(where c: is the root folder containing your Windows system files), 
or by opening the Fonts folder from the Control Panel, accessible 
from the Start button Settings menu. Note that if a previous version 
of the font is installed, you will need to delete that from the Fonts 
folder before installing the new version.

The SBL Hebrew font can also be installed on older versions of 
Windows, but because the font uses a pure Unicode encoding, not an 
8-bit codepage, it may not work consistently in all applications.

It is also possible to install the font on Linux and other open 
source systems using the FreeType library, and on Mac OS X. Please 
see the SBL website for more information.

Although SBL Hebrew is an OpenType format font, it has a .ttf file 
name extension and will display the regular TrueType icon, rather 
than the distinctive OpenType icon. The .ttf extension allows the 
font to be recognised on older versions of Windows (although these 
do not support all aspects of Biblical Hebrew text). The regular True-
Type icon is displayed only because the font does not contain a dig-
ital signature. Note that the different icons available for TrueType 
OT fonts do not indicate anything about the presence or absence of 
OpenType Layout tables for glyph substitution or positioning, both 
of which are present present in the SBL Hebrew font. See pages 4–5 
for more information.

Getting started

Installation

File name and icon



4

Most fonts do not come with user manuals, and most do not need 
them. SBL Hebrew is a complex font that uses new encoding and 
layout technologies, and this manual explains these technologies 
to help you get the most out of your new font. This manual also 
discusses known issues relating to these technologies, especially the 
complicated but important issue of text normalisation. Although 
you can install the SBL Hebrew font on most current operating sys-
tems, and can immediately begin working with it, please take time 
to review this document. Understanding issues like optimal charac-
ter ordering will help ensure that the SBL Hebrew correctly displays 
your text.

SBL Hebrew is a TrueType-flavour OpenType font.
The original TrueType font format was developed by Apple Com-

puters and released in the early 1990s. It was quickly licensed by 
Microsoft Corporation and is the system font format for Apple and 
Microsoft operating systems (the packaging of the format differed 
on the two systems prior to the introduction of Apple’s Mac OS X, 
which can install Windows TT fonts). A TrueType font is a collection 
of tables, each containing information specific to a particular aspect 
of the font. For example, the glyf table contains outline information, 
the cmap table maps glyphs in the font to character codes for text 
entry and storage, and so forth.

The OpenType font format is an extension of the TrueType for-
mat, jointly developed by Microsoft and Adobe Systems. An Open-
Type font has the same table structure as a generic TrueType font, 
but with the option to include a number of additional tables. There 
are two key components to the OpenType extensions: PostScript 
outline data and OT Layout data. The first of these determines the 
‘flavour’ of a font—that is, the kind of outline and rendering tech-
nology used to ‘paint’ text. As noted above, SBL Hebrew is TrueType-
flavour, meaning that it uses the original TrueType outline format 
and rendering technology rather than PostScript. The second key 
component, OpenType Layout data, is essential to the correct ren-
dering of complex scripts like Hebrew, and much of this manual is 
concerned with this technology and how it renders Biblical Hebrew. 
The SBL Hebrew font contains two kinds of OpenType Layout data: 
glyph substitution and glyph positioning. These are stored in the 
OpenType optional tables GSUB and GPOS.

For more information about the OpenType font format, see the 
specification and other material on the Microsoft or Adobe websites. 
The Microsoft introductory essay Windows Glyph Processing, which 
also discusses other aspects of complex script shaping referred to in 
this manual, might be a good place to start. None of this material is 

Introduction

The font format
This section is probably the 

least essential reading in this 
manual. This section explains 

the background to the develop-
ment of the technology used 
in the SBL Hebrew font, and 
explains exactly what kind of 
font this is in technical terms.

For these and other online 
documents, please see the list 

of URLs in Appendix C, p.23



5

essential to being able to use the SBL Hebrew font, but it will help 
you better understand that technologies on which the font relies.

The SBL Hebrew font uses standard Unicode character codes to en-
code Hebrew letters and marks. Unicode is an international char-
acter encoding standard that provides a single unique code for eve-
ry semantic element necessary to encode plain text in supported 
scripts and languages. Today, most of the world’s major scripts and 
languages are supported by Unicode, and recent efforts have led to 
the encoding of numerous historical scripts. Because every character 
in Unicode has a unique code, rather than sharing codes across mul-
tiple codepages or being assigned to different codes e.g. on Windows 
and Mac operating systems, text encoded in Unicode can be safely 
exchanged between different operating systems and applications 
that employ Unicode. The benefit of such a standard to scholarship, 
where authors and publishers are often using different software, 
should be obvious.

In the past, Hebrew text was supported on different platforms, 
and even between different applications, using a variety of stand-
ard and not-so-standard 8-bit encodings. Because the fonts that 
supported these encodings tended to be ‘dumb’ fonts, i.e. without 
built-in layout intelligence, often multiple fonts would be needed 
to correctly display complex texts such as found in Biblical schol-
arship. This, of course, increased the likelihood that text produced 
with these encodings could not be reliably and accurately exchanged 
between systems and applications, because correct display relied on 
not only knowing which encoding standard was used but also which 
font was used where. Unicode and OpenType solve these problems 
by using a unique code for each Hebrew consonant and mark, and 
employing layout intelligence to map from the encoded characters 
to the appropriate arrangement of glyphs to display a given text. 
[See the examples on the following pages.]

While the benefit of Unicode is easy to see, it does require that 
the SBL Hebrew font be used in a Unicode text encoding environ-
ment, i.e. in systems and applications that use Unicode character 
codes when storing, manipulating and displaying text. No guaran-
tees can be made about its performance in non-Unicode environ-
ments. [Note, however, that some applications will internally map 
from Unicode characters in a font to 8-bit codes used internally by 
the application. In this case some text may display correctly with the 
SBL Hebrew font, although the text may be subject to the typical 
exchange problems of 8-bit text.] It may be that your current docu-
ment publishing workflow involves non-Unicode applications, and 
this will limit, for the time being, the usefulness of the SBL Hebrew 

Unicode text encoding
This section explains, in 

simplified terms, what the 
Unicode Standard is, and the 
implications of this encoding 
standard for Biblical Hebrew 

and for users of the SBL 
Hebrew font.

An 8-bit encoding is one 
that uses a single byte of 

computer memory or storage 
for each character in text. 8-bit 

encodings are limited to 256 
characters, which explains the 

need for multiple encodings.



6

font in your work. During the past few years, Unicode has become 
the dominant encoding standard for most major operating systems, 
and is, for example, specified by the World Wide Web consortium 
as the default encoding of XML documents. It is very likely that the 
makers of your present software will be updating their applications 
to handle Unicode, and they may be able to give you estimates on 
when suitable upgrades will be available. If you are tied to software 
that is not being updated to handle Unicode soon, or if you simply 
cannot wait and like the design of the SBL Hebrew typeface, it may 
be possible to arrange to have custom fonts made for specific 8-bit 
encodings, or to make your own. For information on the kind of 
modifications that are permitted, or for contact information, please 
see the font license in Appendix A, page 20.

The layout intelligence in OpenType fonts relies on system or appli-
cation support for basic linguistic shaping. In simple terms, systems 
and applications deal with characters, and fonts deal with glyphs, 
i.e. with the visual representation of characters. Complex scripts like 
Hebrew require systems and applications to be aware of right-to-left 
and bidirectional layout and of character properties that distinguish 
e.g. consonants from combining marks. Some applications will have 
built in support for such things, while others will rely on standard 
system components. Microsoft’s Unicode Script Processor—com-
monly referred to as Uniscribe—is a standard system component 
that includes shaping engines for various scripts, including Hebrew. 
Uniscribe works directly with OpenType fonts, such as SBL Hebrew, 
built according to Microsoft specifications. An application that uses 
Uniscribe will make calls to it as text is entered and edited; Uniscribe 
processes the input characters, and applies the layout intelligence in 
the font accordingly.

If you are using an application that utilises Uniscribe—these in-
clude the Microsoft Office Suite on Windows, Internet Explorer, and 
any other app that makes standard system calls for text input and 
output—you will find working with Biblical Hebrew text very easy 
and the SBL Hebrew font will automatically correctly display most 
text. I say most text, because there is always the possibility to cre-
ate sequences of consonants plus marks that are linguistically non-
standard and which cannot be correctly resolved by the layout fea-
tures in the font. The SBL Hebrew font has been tested with every 
combination of consonant plus mark(s) that occurs in the Michigan-
Claremont Old Testament text. The results of this testing are avail-
able as Acrobat documents from the Society of Biblical Literature 
Hebrew font website, and may be helpful in troubleshooting layout 
discrepancies with different shaping engines.

Uniscribe
This section explains the role 

of the Microsoft Unicode 
Script Processor (Uniscribe) in 

shaping complex scripts. The 
most important thing to note 
in this regard is that different 

versions of Uniscribe will 
produce different results for 

some Hebrew mark sequences.

Note that applications using 
text processing calls on systems 
older than Windows 2000 may 

not be Uniscribe clients.

These test documents are also 
available from http:www.tiro.

com/resources/hebrew/



7

Different versions of Uniscribe ship with and are used by differ-
ent applications and system versions, which means that rendering 
results may vary. We have been fortunate, during the development 
of SBL Hebrew, to test the fonts with unreleased versions of Unis-
cribe that will ship with upcoming software. The new versions of 
Uniscribe have been used to confirm that all consonant plus mark(s) 
sequences in the Michigan-Claremont text will be correctly rendered 
when these versions of Uniscribe are employed. Because SBL Hebrew has, 
in this respect, been designed for ‘cutting edge’ technology, some 
sequences will display incorrectly in systems and applications using 
older versions of Uniscribe. It is important to note that these se-
quences may be correctly encoded, and that documents with display 
problems are not erroneous. Typically, when a sequence of marks 
cannot be correctly rendered by Uniscribe, the shaping engine will 
insert a dotted-circle, and the mark or marks that cannot be applied 
to the preceding consonant will be applied to the circle. The example 
below shows three possible levels of display for a unique sequence 
of consonant plus marks from Job 7:11 (alef + hataf patah + ZWJ + 
meteg + dehi).

 C. Incorrect B. Incorrect A. Correct

A. This example shows the correct rendering applied by Uniscribe 
version 1.471.4063.0, which ships with MS Office 2003. This and 
later versions can be expected to correctly render this and other 
consonant plus mark sequences.

B. This example shows incorrect rendering applied by Uniscribe ver-
sion 1.325.2180.1; this is the version of Uniscribe that ships with 
Windows 2000. As you can see, this version of Uniscribe is unable 
to correctly apply dehi to a consonant that already carries a com-
bination of hataf vowel and meteg, so inserts a dotted circle.

C. This very incorrect example shows the same sequence crudely dis-
played by an application that does not use Uniscribe and cannot 
implement the glyph positioning intelligence in the SBL Hebrew 
font. The marks are blindly centered below the consonant, but 
they collide and do not interract correctly. In some applications, 
the marks may not even be centered below the consonant, but will 
cluster between it and the next letter.

אֲֽ֭

Software developers producing 
software for use in Biblical 
scholarship can arrange for 
a redistribution license for 

Uniscribe. This enables them 
to bundle more recent versions 

of Uniscribe for utilisation by 
their software. Please contact  

Microsoft Typography for more 
information.



8

Note that in the two examples rendered by Uniscribe the meteg com-
bines with the hataf patah, forming a mark ligature in which the me-
teg appears between the two parts of the vowel. For more informa-
tion about this and other aspects of meteg handling, see the section 
of this manual on page 13.

Although implementation of the Unicode Standard is generally a 
boon to scholars working with texts in complex scripts, there is an 
unfortunate and quite serious problem in the current encoding of 
Hebrew. This involves the canonical combining class assignments 
that are used when text is normalised. Normalisation is a process by 
which sequences of characters in text that can be variously encoded 
but are semantically identical are treated as identically encoded. This 
can frequently involve the reordering of a sequence of characters. 
Consider, as an example, this combination of consonant plus marks 
that occurs in 1 Ch 13:13. This combination could be encoded in six 

different ways, and each would result in exactly the 
same visual representation and the same semantic 
meaning for the reader:
1. tet + dagesh + tsere + zaqef gadol
2. tet + dagesh + zaqef gadol + tsere
3. tet + tsere + dagesh + zaqef gadol
4. tet + tsere + zaqef gadol + dagesh
5. tet + zaqef gadol + dagesh + tsere
6. tet + zaqef gadol + tsere + dagesh

The SBL Hebrew font is able to correctly render any of these sequenc-
es (although most users familiar with Hebrew would agree that the 
dagesh should, logically and linguistically, precede the vowel and  the 
cantillation mark, and most would also agree that the vowel should 
precede the cantillation mark). If you consider that any combina-
tion of consonant plus three marks can be encoded in six different 
ways, it is easy to realise how even a fairly short word of five or six 
consonants with all their marks could be encoded in many dozens 
of different ways. Normalisation is important because it provides a 
mechanism for all these possible permutations of mark ordering to 
be resolved to a single canonical order. This is most important when 
a text not only needs to be displayed but also needs to searched, 
sorted or spellchecked. If a search algorithm had to look for fifty or 
more possible and equivalent spellings of a single word, it would be 
extremely inefficient and slow. So normalisation is applied to reor-
der every equivalent sequence of characters into a single and con-
sistent order.

The normalisation issue
This section explains an 

important problem in the 
encoding of Hebrew in the 

Unicode Standard. This 
problem will not affect all text, 

but can be a serious problem 
that users need to be aware of.

טֵּ֕



9

Normalisation is achieved by giving every mark a canonical com-
bining class. This is a number that indicates how close to the base 
character (the consonant, in the case of Hebrew) each mark should 
be ordered and which marks may be reordered relative to each other. 
Some canonical combining classes contain only individual characters, 
indicating that these can always be reordered relative to characters 
with different classes; some classes contain multiple characters, in-
dicating that these cannot be reordered relative to each other. If two 
or more characters are included in the same class, this means that 
their relative ordering is semantically meaningful and not equiva-
lent; therefore, they must not be reordered or the meaning will be 
lost.

So far, so good, but when the Hebrew script was encoded in the 
Unicode Standard, combining classes were assigned in a way that 
failed to take into account the many peculiarities of Biblical texts. 
This has resulted in every Hebrew vowel being assigned its own ca-
nonical combining class, meaning that combinations of two vowels 
applied to a single consonant may be reordered during normalisa-
tion. This is not a problem for modern Hebrew spelling, but can be 
disastrous for Biblical texts due to textual conventions such as the 
tendency to record changing pronunciation by applying new vocali-
sation but preserving the original consonant structure of words. A 
good—and important—example is the change in pronunciation of 
yerušālēm to yerušālayim, which required the Masoretes to add hiriq 
between the lamed and the final mem in order to approximate the 
new pronunciation as yerušālaim, while preserving the consonant 
structure of the ancient manuscripts. The final four characters of 
this word are correctly encoded in the order lamed + patah + hiriq + 
final mem, and the word is correctly displayed יְרוּשָׁלִַם ; however, the 
faulty canonical combining classes for patah and hiriq in Unicode 
cause hiriq to always precede patah when reordering due to normali-
sation is applied. The resulting sequence lamed + hiriq + patah + final 
mem is both textually incorrect and cannot be correctly displayed by 
the SBL Hebrew font: ם  .( note collision of vowels under lamed) יְרוּשָׁלִַ
Unicode normalisation can easily break Biblical Hebrew text.

The good news is that most software does not automatically ap-
ply normalisation, and software developers familiar with Biblical 
Hebrew are likely to be aware of the problem. There remains a risk, 
however, especially when documents are being exchanged between 
different platforms or published on the Internet, that a piece of soft-
ware beyond the original author or editor’s control—a web browser 
on the receiving end of an electronic document, for example—may 
apply normalisation. This is, of course, not a font issue per se; it is a 
text encoding issue that can affect any document and result in tex-

Note that the Unicode 
Standard includes multiple 

normalisation forms, i.e. 
different ways of normalising 

text, and not all of these 
involve reordering of marks. 

The form that is of concern for 
Biblical Hebrew encoding is 

Normalisation Form C, which 
does reorder marks.

For more thorough discusion of 
this example, see Tov, Emanual. 

Textual criticism of the 
Hebrew Bible. 2nd edition, 

Minneapolis, 1992. p43.

Here are the Hebrew words 
from this example enlarged.

Correct, before normalisation:

יְרוּשָׁלִַם
Inorrect, after normalisation:

ם יְרוּשָׁלִַ



10

tual error, incorrect display, or both. To avoid these problems, the 
latest generation of Hebrew shaping engines, such as Uniscribe for 
Windows Vista and Office 2007, perform corrective mark ordering 
during rendering, to ensure that normalised sequences can be cor-
rectly rendered by fonts built to a common specification. This will 
remove many of the possible display problems associated with Uni-
code normalisation. However, there will remain a number of cases 
in which the results of normalisation may display ‘correctly’ but in 
which the meaning of the text is changed. For instance, if meteg is 
positioned at the right side of a vowel, it may be moved to the left 
side during normalisation: both positions will render correctly, and 
either is textually legitimate. So mechanisms are necessary to guard 
against some mark reordering during normalisation.

Software developers who need to apply normalisation to text to 
facilitate efficient searching can, of course, avoid the problems of the 
Unicode mark reordering by using a custom normalisation routine 
that does not reorder Hebrew vowels. Combining classes for such a 
custom routine, based on the mark ordering recommendations of 
the next section, are suggested in Appendix B, page 20. However, 
this does not address the issue of Unicode normalisation being ap-
plied ‘downstream’ of document creation, e.g. in web browsers.

The Unicode Technical Committee recommends the use of the 
Combining Grapheme Joiner (CGJ, U+034F) character as a control 
character to override mark reordering during normalisation, and the 
SBL Hebrew font has been updated to handle this mechanism. Us-
ing this mechanism, the problem case of mark reordering discussed 
on page 9 would be resolved by inserting the CGJ character between 
the patah and hiriq marks: lamed + patah + CGJ + hiriq + final mem. 
The CGJ character can be inserted between any two adjacent mark 
characters that may be subject to reordering during normalisation, 
and will prevent this reordering from happening. Software develop-
ers are currently discussing ways in which this can be implement-
ed automatically, so that the burden is not on document authors 
to identify situations in which mark reordering might occur and to 
manually insert CGJ at these places. It may be some time before such 
solutions become widely implemented.

If you are not concerned about mark reordering, e.g. because you 
are working in a completely closed text environment that does not 
employ normalisation or which uses a custom normalisation rather 
than the Unicode one, you do not need to worry about the CGJ char-
acter in this regard. If you are producing documents that may be 
published to the Internet or in other circumstances in which you do 
not have control of normalisation, CGJ provides a means for you to 
prevent unwanted reordering. If you are working with specific Bi-

If you are using the Tiro 
Biblical Hebrew keyboard 

v1.2, you can insert the CGJ  
character manually using the 
key combination [ctrl+alt+7].

If you are using the SIL Biblical 
Hebrew keyboard, you can 

insert the CGJ character 
using the key combination 

[shift+ctrl+alt+P]

See the last paragraph on page 
13 for additional examples 

of mark reordering and CGJ 
insertion.



11

ble passages, and are concerned about normalisation reordering of 
marks, you may find it helpful to check the chapter and verse to see 
what words may be affected in a way that changes the recommended 
mark order discussed in the following sections of this manual. To 
assist in this, we will be producing a document for each Bible book, 
identifying such words. These will be available from the SBL website 
and from  http:www.tiro.com/resources/hebrew (in progress).

Note that not all mark reordering results in broken rendering or 
textual ambiguity. As noted above, some rendering engines may cor-
rect reordering during display, further reducing the number of in-
stances in which CGJ needs to be inserted; the most important use 
of CGJ is in instances where the reordered text may render ‘cleanly’ 
but where textually important distinctions are lost, e.g. where a me-
teg moves from one side of a vowel mark to another.

As discussed in the previous section, the SBL Hebrew font can cor-
rectly display equivalent sequences of marks applied to consonants 
in different orders. The font cannot correctly display every possible 
permutation, especially when more than two marks are involved, 
but it seldom matters, for instance, whether a below vowel or above 
cantillation mark is applied to a consonant first. That said, there are 
many benefits to establishing consistent habits in ordering marks 
when creating documents. By following the recommended mark or-
dering outlined in the table on the next page, you will avoid enter-
ing sequences that cannot be correctly displayed—unless, of course, 
they are beyond the general ability of the SBL Hebrew font to render 
the Old Testament text—, and you will also make searching for 
Hebrew words and phrases easier for yourself and colleagues with 
whom you exchange electronic documents.

The basic principles of the mark ordering recommendation is that 
marks affecting the pronunciation of consonants are applied first; 
then the holam mark; then below marks, vowels and consonants, as 
they occur from right-to-left except the prepositive marks yetiv and 
dehi, which are applied after other low marks because they are po-
sitioned relative to them; then above marks, including metatextual 
marks such as the masora circle, as they occur from right-to-left ex-
cept the postpositive marks pashta, telisha qetana and zinor. The table 
of marks on the next page shows the order in which they should be 
entered (note that this corresponds, also, to the recommendations 
for custom normalisation in Appendix B, page 21).

Mark ordering
This section discusses 

recommended ordering for 
sequences of consonants with 
multiple marks. This is one of 

the more important sections of 
this manual.



12

Table 1
Recommended mark ordering 1 Base consonant ש

2 shin dot ׁש
 sin dot ׂש
3 dagesh/mapiq ּש
4 rafe ֿש
5 holam ֹש
6 Below marks from the 

following group as the occur 
from right-to-left:

sheva ְש
hataf segol ֱש
hataf patah ֲש
hataf qamats ֳש
hiriq ִש
tsere ֵש
segol ֶש
patah ַש
qamats (gadol) ָש
qamats qatan ׇש
qubuts ֻש
meteg 1 ֽש
atnah ֑ש
atnah hafukh ֢ש
tipeha ֖ש
tevir ֛ש
munah ֣ש
mahapakh ֤ש
merkha ֥ש
merkha kefula ֦ש
darga ֧ש
yerah ben yomo ֪ש
low punctum extra.2 ׅש

7 Prepositive below marks 

from the following group:

yetiv ֚ש
dehi ֭ש

8 Above marks from the 
following group as they 
occur from right-to-left:

shalshelet ֓ש
zaqef qatan ֔ש
zaqef gadol ֕ש
revia ֗ש
zarqa ֘ש
qarney para ֟ש
gershayim ֞ש
geresh muqdam ֝ש
geresh ֜ש
telisha gedola ֠ש
iluy ֬ש
qadma (azla) ֨ש
ole ֫ש
pazer ֡ש
masora/number dot 3 ̇ש 

high punctum extra.2 ׄש
masora circle 4 ֯ש

9 Postpositive above marks 
from the following group:

segolta ֒ש
pashta ֙ש
telisha qetana ֩ש
zinor ֮ש

Notes:
1. See page 13 for specific information about meteg ordering.
2.  See page 14 for specific information about puncta extraordinaria. Note that the 

high punctum is centered above the letter and above any other high marks; it 
should usually be ordered last of the marks in its group. Similarly the low punc-
tum should usually be ordered after other below marks.

3. See page 15 for specific information about the masora/number dot.
4. Although it may visually be positioned slightly to the right of other above 

marks, the masora circle is usually ordered after any other marks in this 
group. See page 15 for specific information about masora circle handling.



13

The Hebrew mark meteg can appear in a variety of positions rela-
tive to other below marks, and all these are supported in the SBL 
Hebrew positioning lookups. However, not all are equally well sup-
ported in applications at the time of writing. This section explains 
how to encode sequences of consonant plus meteg with other marks 
to achieve different visual results, and shows how these will be ide-
ally rendered.

The normal position of meteg relative to vowel marks is to the 
left, e.g. ּיִּמְצְא֗ו  + Such a sequence is encoded consonant .(Kings 1:3 1)  וַֽ
vowel + meteg, that is, as the marks are ordered from right to left.

Much less commonly, meteg can appear to the left of a cantilla-
tion mark, e.g. ים  Again, this sequence is encoded as .(Ex 20:2)  עֲבָדִֽ֑
the marks are ordered from right to left: consonant + vowel + cantil-
lation + meteg.

When meteg is applied to a consonant bearing a hataf vowel (hataf 
segol, hataf patah or hataf qamats), the default font rendering is also 
for the meteg to be positioned to the left of the vowel, e.g. ה  הְ יֶ֥ יוֹת־אֶֽ  הֱֽ
 (Ps 50:21). However, it is common for this mark combination to be 
displayed with a medial meteg positioned between the two parts of 
the hataf vowel, e.g. ם לֹהֵיכֶ֔  This is handled by the SBL .(Chr 32:15 2)  א�
Hebrew font, using an OpenType ligature substitution, when the 
Zero Width Joiner (ZWJ, U+200D) control character is inserted be-
tween the hataf vowel and the meteg: consonant + hataf vowel + ZWJ 
+ meteg.

Finally, there are those instances in which meteg needs to be 
placed to the right of a vowel. These are relatively common on the 
first consonant of a word in the Biblia Hebraica Stuttgartensia text, 
e.g. ָ֥֣ה־לְך עֲשֶׂ֨ עֲרָה֙ .but may also occur in mid-word, e.g ,(Ex 20:4)  תַֽ   וְלַנַּֽ
 (Deut 22:26). In such cases, meteg should be encoded before the vow-
el, i.e. as the marks are ordered from right to left: consonant + meteg 
+ vowel. Note that this ordering should also be used in those rare 
cases where meteg occurs to the right of a hataf vowel, e.g. תָּה לאֹ־אַ֭  הֲֽ
 (Psa 85:7).

Note that because of the canonical combining class assigned by 
Unicode to the meteg character, it may be subject to reordering dur-
ing normalisation (see pages 8–11). For instance, the example from 
Exodus 20— ה־לְךָ֣֥ עֲשֶׂ֨  would be reordered during normalisation—תַֽ
such that the meteg shifts to the left of the patah: ָ֥֣ה־לְך עֲשֶׂ֨  If the .תַֽ
relative position of meteg to a vowel is textually important, care 
must be taken to prevent reordering through automatic or manual 
insertion of the CGJ character, e.g. bet + meteg + CGJ + patah.

Meteg handling
This section explains the vari-
ous ways in which the meteg 
mark can be applied and the 

expected results.



14

Puncta extraordinaria (extraordinary points) occur fifty-six times in 
the Old Testament text: fifty-three times above letters and three 
times below letters. The electronic edition of the Biblia Hebraica 
Stuttgartensia text notes that the function of these marks

is not entirely clear, but it has variously been proposed that: a) the 
marks are merely emphasis and draw special attention to the theological 
implications of the word; b) the marks are early critical marks which 
indicate an omission or change that the scribes desired to make, but dared 
not; c) the marks represent drops of ink or even bits of dirt that were 
slavishly copied from one manuscript to the next; d) the marks indicate a 
special or unusual pronunciation of the word, or that the word should not 
be read at all; or e) some mixture of the above, on a case-by-case basis. 

The most complex example of puncta extraordinaria is in Ps 27:13, in 
which puncta appear both above and below, and with other marks.

Note that, in accordance with the recommend mark or-
dering on page 12, the complex combination of lamed 
with above and below marks plus puncta in this example 
should be encoded consonant + vowel + puncta below + 

mark above + puncta above. Also note that because the puncta ex-
traordinaria are positioning above and below the level of most other 
marks, it may be necessary to increase linespacing in those parts of 
the text where these marks occur.

The SBL Hebrew font encodes these marks using the Hebrew ‘up-
per dot’ (U+05C4) and Hebrew ‘lower dot’ (U+05C5) characters; the 
latter is a recent addition in version 4.1 of the Unicode Standard.

The atnah hafukh (U+05A2) character has been recently included in 
Unicode 4.1 for the benefit of those users who wish to encode an ex-
plicit distinction between this accent and yerah ben yomo (U+05AA). 
Many editions do not make this distinction, using the yerah ben yomo 
character and its glyph to represent both accents. Since this is a new 
character, with some disunification legacy issues (the form of the 
yerah ben yomo character used in many typefaces is actually that of 
the atnah hafukh), support in this version of SBL Hebrew is prelimi-
nary and subject to review: the character code is supported, but the 
glyph is identical to that used for yerah ben yomo, 

The new qamats qatan (U+05C7) character makes it possible, if de-
sired, to encode an explicit distinction between this vowel (short qa-
mats) and the long qamats (U+05B8, qamats gadol). To visualise this 
distinction, following a convention adopted in some editions, the 
glyph for this new character is noticeably taller than that for qamats 
gadol.

Puncta extraordinaria
This section explains the 
current recommendation 
for encoding the puncta 

extraordinadia, illustrating 
how they should appear if 

rendered correctly.

Biblia Hebraica Stuttgartensia :  
with Westminster Hebrew 
morphology. 1996 (Logos).

The lower punctum was 
previously encoded in SBL 
Hebrew using the generic 

combining dot below (U+0323). 
Documents produced with this 
earlier encoding will need to be 

updated.

Atnah hafukh and
qamats qatan

This section explains two new 
characters in Unicode 4.1 and 
their implementation in this 

version of SBL Hebrew



15

Not to be confused with the high puncta extraordinaria, this high dot 
mark is used primarily in the context of Masoretic notes, as in this 
example from Num 32:24:

ב¹⁴̇ . י̇ז̇ מפק̇ א¹⁵ ם  כֶ֑ ת לְצנַֹאֲ֯ רֹ֭ ם וּנְדֵ֯ ם עָרִים֙ לְטַפְּכֶ֔ בְּנוּ־לָכֶ֤
 MASOrA TeXT

Like the low puncta extraordinaria the masora/number dot is not en-
coded in the Unicode Standard as a specifically Hebrew character, so 
a generic combining dot above (U+0307) is used.

The same character is sometimes used to indicate a consonant 
used as a numeral in the traditional Hebrew numbering system: ̇1= א, 
 and so on, with nine consecutive letters ,30= ל̇ ,20= כ̇ ,10= י̇ … 3= ג̇ ,2= ב̇
of the alphabet used for units, tens and hundreds up to 400 (some 
sources identify final letter forms for 500–900).

This numbering system is extended in some reference books 
to counting in thousands by doubling the dots: ̈2000= ב̈ ,1000= א, 
 etc.. The double dot is encoded using the generic combining ,3000= ג̈
diaeresis character (U+0308).

The circle indicating a Masoretic note can occur over a consonant, 
between consonants, over a maqaf, or over a word space. Ideally, it 
should be centred over a word, but there is no way to specify this 
in Unicode combining mark encoding or OpenType Layout. Man-
ual care must be taken with the positioning. The SBL Hebrew font, 
by default, places the masora circle above the preceding consonant, 
maqaf or word space, as on these examples from the first chapter of 
Genesis:

י ץ֯פְּרִ֞ פֶת … 9אֶל־֯מָק֣וֹם …11עֵ֣ 2מְרַחֶ֖֯
The masora circle glyph is centered on a zero-width, which means 
that if the default positioning is inhibited it will automatically be 
placed between the character to which it is applied and the next. The 
positioning can be inhibited by inserting the ZWNJ control character 
between the masora circle and the consonant, maqaf or word space 
to which it is applied. In the examples below, also from Genesis 1, 
the character sequence is consonant + [vowel/cantillation mark(s)] + 
ZWNJ + masora circle.

רֶךְ֯ ים …28וַיְבָ֣ ה …22ביַּּ֯מִּ֔ 10וּלְמִקְ֯ וֵ֥
Note that, as shown in the last example from Genesis 1:28, the ZWNJ 
character can also be used to position a masora circle after a word 
break at the end of a line.

Masora/Number dot
This section explains the 

use of the upper dot mark 
in Masoretic notes and for 

Hebrew numerals

For a complete table of Hebrew 
numerals, see R. Wonneberger, 

Understanding BHS, 1990.

See, for example, Georges Ifrah, A 
universal history of numbers, 1998 

(original French edition 1994).

Masora circle handling
This section explains how 
to encode and control the 

positioning of the masora 
circle.



16

Some texts—both manuscript and typographic—make a visual dis-
tinction in the position of the dot between a vav haluma, i.e. vav fol-
lowed by a holam haser ( ֹו ), and the independent vowel holam male 
 ,וֹ Some texts do not make this distinction, displaying both as .( וֹ )
and some electronic documents may even encode both graphemes 
the same way, relying on the reader’s expertise to distinguish them.

Earlier versions of the SBL Hebrew font used a mark+base order-
ing convention to distinguish holam male and vav haluma, but this 
has been deprecated because the holam male encoding was counter 
to basic Unicode rules about base+mark ordering. The correct en-
coding of this distinction has been the subject of much discussion 
in Unicode circles. The consensus, now formally enshrined in the 
standard, is that the character sequence vav + holam (U+05B9) is the 
correct encoding for holam male, since this is far more common than 
the relatively rare vav haluma. This was first implemented in version 
1.12 of the SBL Hebrew font:

vav + holam (holam male) = וֹ

Version 1.5x of the font supports the new Unicode 5.0 combining 
mark character HeBreW POINT HOLAM HASer FOr VAV (U+05BA). 
This character is explicitly intended to encode vav haluma and be-
haves relative to vav as the common holam dot to other consonants. 
This new character provides a robust encoding distinction for those 
users who wish to differentiate holam male and vav haluma as illus-
trated in the fourth and fifth words of this example from Genesis 
4:13 :

Nun hafukha—‘inverted nun’—is not a letter, but a form of special 
punctuation that occurs only a handful times in the Hebrew Bible 
(e.g. Numbers 10:35–36). Hebrew manuscripts show a number of dif-
ferent forms for this character, depending on the script style, only 
one of which actual resembles an inverted nun letter. This character 
is encoded in Unicode as the character U+05C6.

nun hafukha = ׆

In pointed texts, the inverted nun carries a dot above it. For this, the 
masora/number dot character (U+0307) should be used:

nun hafukha + masora/number dot = ׆̇

Holam male / vav haluma
This section explains the 

encoding of the vowel holam 
male, distinct from the 

consonant plus vowel sequence 
vav with holam haser.

Documents using the 
deprecated conventions of 

holam + vav = holam male / 
vav + holam = vav haluma 

will need to be updated.

Nun hafukha
This section explains a 

mechanism for displaying the 
‘inverted nun’ glyph.  

      
 



17

DSS transcription
This section explains the 
encoding conventions for 

transcribing Dead Sea Scrolls 
and Judean Desert texts

Support for Dead Sea Scrolls transcription is new to the SBL Hebrew 
1.5x general release. The font supports transcription conventions as 
employed in numerous works related to both the Dead Sea Scrolls 
and to other ancient manuscripts from the Judean Desert. The en-
coding for these conventions is as follows:

ring above U+030A א̊ 

dot above U+0307 א̇ 

 ◦ white circle U+25e6

 • black circle U+2022

strikeout U+0336 א 

braces U+007B / U+007D {א} 

brackets U+005B / U+005D [א] 

Example: ]א̊נ̊שי ◦[ 
]ם̊ השנ◦[

] ובתרביות̇[
]לטרוף צד[ה
]ק̇ץ   אחר̇י̊ת̊[

It should be noted that there is some discrepancy between how 
diffferent applications handle display of parenthetical characters 
such as braces and brackets  in bidirectional text layout. Care should 
be taken to check the results when text created in one application 
is imported into another application: it is possible for parentheti-
cal punctuation to become reversed. In general, because most of the 
transcription characters are not explicitly right-to-left, care must be 
taken in formatting documents, correctly setting paragraph direc-
tionality, etc..

Most word processing and text layout applications have a ‘strikeout’ 
function that provides an easy means to transcribe crossed out let-
ters without the need to use an additional character code after each 
letter. However, use of the combining mark U+0336 enables a plain 
text distinction to be made, which will reliably survive text exchange 
between different applications and platforms.

Input support for the Dead Sea Scrools trascription characters is  
available from version 1.5 of the Tiro and SIL Biblical Hebrew key-
board drivers, available from the SBL wesbite.

���



18

The term ‘font support’ can refer to a number of different things, 
from installability to text display to complex glyph rendering, so 
when wondering whether a particular operating system or applica-
tion (or particular combination of OS and application) supports use 
of a font it is necessary to understand the limitations that can apply. 

Macintosh. The Mac OS X operating system can natively install and 
render the SBL Hebrew ‘data-fork’ format Windows TrueType font. 
Older versions of the Mac operating system cannot natively install 
this format, and need a Mac-specific ‘resource-fork’ format font file. 
At present, no resource-fork version of the SBL Hebrew font is avail-
able, since there are so few Unicode enabled applications for older 
Mac operating systems. Note that some applications, particularly 
new versions of much Adobe software (on both Mac and Windows), 
can install fonts, including SBL Hebrew, directly in their own font 
folders and use their own rendering technology, bypassing system 
font handling; some of these applications may provide support on 
older versions of the Mac operating system.

The latest version of OS X, Tiger, implements some system level 
support for basic OpenType Layout features, converting them on 
the fly to Apple’s own AAT format features. However, this does not 
include support for complex script layout, so the all-important mark 
attachment is not supported at the system level. This means that 
applications relying on standard system calls for text processing will 
not be able to handle Biblical Hebrew text using SBL Hebrew, even 
though they may support Unicode text encoding and basic right-to-
left layout.

Applications that use their own text layout engines, designed to 
work with OpenType fonts, offer the most hope for Macintosh us-
ers. At the time of writing, none of these applications offer the same 
high level of Biblical Hebrew rendering as Microsoft Office 2003 on 
Windows, but some are gradually getting close.

Mellel is a word processing application for OS X that employs 
OpenType Layout natively using its own text engine. Biblical He-
brew test results from Mellel are encouraging, with almost all tested 
letter+mark sequences rendering correctly. One problem in the cur-
rent release is that there is no way to turn off visual display of con-
trol characters, so if you insert e.g. the Zero Width Joiner character 
in a sequence Mellel will display a small mark above the letters. [In 
Microsoft Word on Windows, display of control characters is off by 
default, but can be turned on to facilitate editing; this behaviour is 
preferred.]

XeTeX is a typesetting system that marries Donald Knuth’s TeX 
system with Unicode text encoding and OpenType Layout. Only a 

Support in non-Windows 
systems & applications

This section explains the 
current state of support for 

SBL Hebrew on Macintosh & 
Linux operating systems.

See Appendix C on page 22 
for web link information on  

Mellel and other applications 
mentioned in this section,



19

small number of users appear to be using this for Biblical Hebrew, 
but the examples they have submitted are impressive and indicate 
that XeTeX provides some of the best support for Hebrew outside of 
the Windows version of Word and other Office applications. XeTeX 
makes use of the ICU layout library discussed below.

Linux. As with many other aspects of open source computing, the 
level of support for Biblical Hebrew on Linux depends very much 
on specific distribution, library and application configurations. This 
section of the manual is necessarily short simply because we have 
limited experience in this area, and have only recently begun to ex-
plore it.

Users of the SBL Hebrew font who are interested in Hebrew 
rendering on Linux systems are encouraged to investigate the ICU 
and Pango, two code libraries that provide support for Unicode text 
processing including OpenType Layout support. Tests of current 
version of Pango, compiled into the Firefox web browser, show cor-
rect positioning of single accent to single vowel combinations, but 
errors in second accent and accent-to-accent relative positioning. 
Results from applications using ICU seem better.

Linux-based users of the SBL Hebrew font are particularly encour-
aged to join the MSN user community, and to share tips and tricks for 
working with Biblical Hebrew text on this platform.

As should be clear from this manual, the SBL Hebrew font is on the 
‘cutting edge’ of text processing and layout technology, and much 
software still needs to catch up to the font in order to perfectly 
render all aspects of Biblical Hebrew texts. That said, in the seven-
teen months since the last version of this manual was written, there 
have been encouraging advances, especially on the Mac and Linux 
systems.

During development of the font, key software developers such as 
the Microsoft development lead responsible for the Uniscribe He-
brew engine have consulted on the best way to encode and shape 
Biblical Hebrew and have provided beta versions of upcoming soft-
ware releases for testing. This consultation has enabled us to make 
a font that outperforms all previous Hebrew text rendering, and 
which will enable Biblical scholars to create, edit and exchange docu-
ments between the increasing number of systems and applications 
that support Unicode text encoding and OpenType Layout.

Conclusion



20

1. The digitally encoded machine readable font software for producing the type-
faces licensed to you is the property of Tiro Typeworks. It is licensed to you for 
use under the terms of this end user license agreement. If you have any ques-
tions about this license agreement, or have a need to use the font software in a 
way not covered by this agreement, please write to license@tiro.com.

2. You may use this font software free of charge for all non-commercial purposes. 
If you wish to obtain a license for commercial use of this font software, please 
contact the Society of Biblical Literature at sblexec@sbl-site.org, or write to 
license@tiro.com. Fees for commercial licenses are at the individual discretion of 
the Society of Biblical Literature and Tiro Typeworks.

3. You may redistribute this font software free of charge as long as the software is 
unmodified, all copyright and trademark notices are intact, and the font contains 
or is accompanied by a copy of this license agreement. You may not charge any 
fee for the distribution of this font software or alter the terms of this license 
agreement.

4. You may decompile and modify this font software for non-commercial and 
personal use by you as an individual or internal use within your organisation. 
Tiro Typeworks maintains copyright to all derivative fonts in any format. You 
may not delete, edit or add to copyright, trademark or license information in 
the font. You may not change the embedding bit. You may not redistribute any 
modified version of the font software, either free of charge or for a fee. Copies of 
modified fonts should be submitted to Tiro Typeworks (license@tiro.com) and to 
the Society of Biblical Literature (sblexec@sbl-site.org), along with any relevant 
documentation. Tiro Typeworks reserves the right to incorporate any such 
changes into its own fonts.

5. You may embed the font software in non-commercial electronic documents, 
including but not limited to web pages and e-books. Font embedding must re-
spect the embedding bit in the font, which must not be changed. The embedding 
bit for this font software is set to ‘Editable Embedding’, meaning that documents 
containing this font software may be viewed, printed and edited, but the embed-
ded font may not be installed on the recipient user’s system.

6. All other rights are reserved by Tiro Typeworks, except as otherwise designat-
ed in contract between Tiro Typeworks and the Society of Biblical Literature.

7. Neither Tiro Typeworks not the Society of Biblical Literature warrant the per-
formance or results you may obtain by using this font software. Excepting any 
warranty, condition, representation or term that cannot or may not be excluded 
or limited by law applicable to you in your jurisdiction, Tiro Typeworks and the 
Society of Biblical Literature make no warranties, conditions, representations, 
or terms (express or implied whether by statute, common law, custom, usage or 
otherwise) as to any matter including, without limitation, noninfringement of 
third party rights, merchantability, integration, satisfactory quality, or fitness for 
any particular purpose.

8. Neither Tiro Typeworks nor the Society of Biblical Literature accept any li-
ability for injury, death, financial loss or damage to person or property (includ-
ing computer hardware, software or data) resulting from the use of this font 
software.

9. The act of installing this font software on any computer system constitutes 
acceptance of the terms of this license agreement, without exception.

Appendix A
End User License Agreement

This license agreement explains 
the rights and responsibilities 

that you accept when you 
install the SBL Hebrew font 

on your computer. Please take a 
few minutes to review this.



21

See the discussion on pages 8–11 for more information about nor-
malisation issues, and the Unicode Standard for details of standard 
n0rmalisation and combining classes. Below are suggested canoni-
cal combining classes to use in custom normalisation routines for 
Biblical Hebrew text. As in standard normalisation, the expectation 
is that only marks in different combining classes will be reordered 
during normalisation; marks with the same combining class value 
should not be reordered. The lower the combining class value, the 
closer to the base character (e.g. Hebrew consonant) the mark should 
be ordered. In this table, the recommended combining class is pro-
vided first, then the existing Unicode combining class in grey, and 
then the Unicode codepoint and a descriptive name.

 10  24 U+05C1 Point Shin Dot

 11  25 U+05C2 Point Sin Dot

 21  21 U+05BC Point Dagesh or Mapiq

 23  23 U+05BF Point Rafe

 27  19 U+05B9 Point Holam

 27  19 U+05BA Point Holam Haser for Vav

220 220 U+05C5 Lower Punctum 

220 220 U+0591 Accent Atnah 

220 220 U+05A2 Accent Atnah Hafukh

220 220 U+0596 Accent Tipeha 

220 220 U+059B Accent Tevir 

220 220 U+05A3 Accent Munah 

220 220 U+05A4 Accent Mahapakh 

220 220 U+05A5 Accent Merkha 

220 220 U+05A6 Accent Merkha Kefula 

220 220 U+05A7 Accent Darga 

220 220 U+05AA Accent Yerah Ben Yomo 

220  10 U+05B0 Point Sheva 

220  11 U+05B1 Point Hataf Segol 

220  12 U+05B2 Point Hataf Patah 

220  13 U+05B3 Point Hataf Qamats

220  14 U+05B4 Point Hiriq 

220  15 U+05B5 Point Tsere 

220  16 U+05B6 Point Segol 

220  17 U+05B7 Point Patah 

220  18 U+05B8 Point Qamats 

220  18 U+05C7 Point Qamats Qatan

220  20 U+05BB Point Qubuts 

220  22 U+05BD Point Meteg

222 222 U+059A Accent Yetiv 

Appendix B
Custom combining classes.

As explained on pages 8–11, 
Unicode normalisation may 

break Biblical Hebrew text 
by reordering marks that 

should not be reordered. This 
appendix provides alternate 

combining classes to use 
in custom normalisation 

routines. Nota bene: these 
alternate combining classes 

are outside of any recognised 
standard, and text produced 

using custom normalisations 
may still be subject to other 
normalisations in software 
beyond the author’s control 

(e.g. web browsers). This list is 
provided purely as a suggestion, 

and no guarantee is made 
that it will be supported as is 
in software developed by SBL, 

Tiro Typeworks, or any of their 
project partners.



22

222 222 U+05AD Accent Dehi

230 230 U+05C4 Upper Punctum 

230 230 U+0593 Accent Shalshelet 

230 230 U+0594 Accent Zaqef Qatan 

230 230 U+0595 Accent Zaqef Gadol 

230 230 U+0597 Accent Revia 

230 230 U+0598 Accent Zarqa 

230 230 U+059F Accent Qarney Para 

230 230 U+059E Accent Gershayim 

230 230 U+059D Accent Geresh Muqdam 

230 230 U+059C Accent Geresh 

230 230 U+0592 Accent Segolta 

230 230 U+05A0 Accent Telisha Gedola 

230 230 U+05AC Accent Iluy 

230 230 U+05A8 Accent Qadma 

230 230 U+05AB Accent Ole 

230 230 U+05AF Mark Masora Circle 

230 230 U+05A1 Accent Pazer 

230 230 U+0307 Mark Number/Masora Dot

232 228 U+05AE Accent Zinor 

232 230 U+05A9 Accent Telisha Qetana 

232 230 U+0599 Accent Pashta

The makers of the SBL Hebrew font would like to thank the individuals and or-
ganisations who participated in ad hoc discussions to determine an appropriate 
mark ordering for normalised Biblical Hebrew, especially Peter Constable (SIL 
International) and Eli Evans (Libronix/Logos). Other contributors included Joan 
Wardell (SIL International), Patrick Durusau (SBL), Ralph Hancock, Paul Nelson 
(Microsoft), Bob Pritchett (Libronix/Logos), & Kent Richards (SBL).



23

http://www.sbl-site.org/Resources/

The latest version of the SBL Hebrew font, this manual, and other 
information relating specifically to SBL Hebrew; downloadable 
Windows keyboard drivers for input of Biblical Hebrew text.

http://www.sbl-site.org/

Society of Biblical Literature website.

http://www.tiro.com/resources/hebrew

Tiro Typeworks resources for Biblical Hebrew, including normalisa-
tion example documents. [In development.]

http://www.unicode.org/

The Unicode Consortium website. Includes latest version of 
Unicode Standard and resources.

http://www.microsoft.com/typography/specs/default.htm

OpenType specification and Microsoft Hebrew font specification.

http://www.microsoft.com/typography/developers/

opentype/default.htm

‘Windows Glyph Processing’ article by John Hudson; an introduc-
tion to OpenType font and Unicode script processing on 
Windows.

https://www.mellel.com/
Mellel is a powerful multilingual word processor for Mac OS X. It’s 
handling for Biblical Hebrew is not yet perfect, but it is very good.

http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&item_id=xetex

Download site for the open source XeTeX page layout application 
for Mac OS X.

http://www.winsoft.fr/

Winsoft make the Middle East versions of Adobe software, includ-
ing InDesign Me, which was used to typeset this manual.

http://www-306.ibm.com/software/globalization/

icu/index.jsp

International Components for Unicode: an open source set of  
libraries for Unicode support, software internationalization and 
globalization. Provides excellent OpenType Layout support.

http://www.pango.org/

An open-source framework for Unicode text layout and rendering.

Appendix C
Resource links

This appendix provides URLs for 
font and document downloads 
and online resources from the 
Society of Biblical Literature 

and other parties.


